
A Class of Weak Keys in the RC4 Stream Cipher
Preliminary Draft

Andrew Roos

Vironix Software Laboratories

22 September 1995

1 Introduction

This paper discusses a class of weak keys in RSA’s RC4 stream cipher. It shows
that for at least 1 out of every 256 possible keys the initial byte of the pseudo-
random stream generated by RC4 is strongly correlated with only a few bytes
of the key, which effecitively reduces the work required to exhaustively search
RC4 key spaces.

2 State Table Initialization in RC4

Although the RC4 algorithm has not been published by RSA Data Security,
source code to implement the algorithm was anonymously posted to the Cypher-
punks mailing list several months ago. The success of the Cypherpunks’ brute-
force attack on SSL with a 40-bit key indicates that the source code published
did accurately implement RC4.
RC4 uses a variable length key from 1 to 256 bytes to initialize a 256-byte

state table which is used for the subsequent generation of pseudo-random bytes.
The state table is first initialized to the sequence {0,1,2,. . . ,255}. Then:

1 index1 = 0;

2 index2 = 0;

3

4 for(counter = 0; counter < 256; counter++)

5 {

6 index2 = (key_data_ptr[index1] + state[counter] + index2) % 256;

7 swap_byte(&state[counter], &state[index2]);

8 index1 = (index1 + 1) % key_data_len;

9 }

Note that the only line which directly affects the state table is line 7, when
two bytes in the table are exchanged. The first byte is indexed by “counter”,
which is incremented for each iteration of the loop. The second byte is indexed
by “index2” which is a function of the key. Hence each element of the state
table will be swapped at least once (although possibly with itself), when it is
indexed by “counter”. It may also be swapped zero, one or more times when it is
indexed by “index2”. If we assume for the moment that “index2” is a uniformly

1



distributed pseudo-random number, then the probability that a particular single
element of the state table will be indexed by “index2” at some time during the
initialization routine is:

P = 1− (255/256)255

= 0.631

(The exponent is 255 because we can disregard the case when “index2” and
“counter” both index the same element, since this will not affect its value.)
Conversely, there is a 37% probability that a particular element will not be

indexed by “index2” during initialization, so its final value in the state table
will only be affected by a single swap, when it is indexed by “counter”. Since
key bytes are used sequentially (starting again at the beginning when the key
is exhausted), this implies:

A. Given a key length of K bytes, and E < K, there is a 37% probabil-
ity that element E of the state table depends only on elements 0 . . . E
(inclusive) of the key.

(This is approximate since “index2” is unlikely to be uniformly distributed.)
In order to make use of this, we need to determine the most likely values for

elements of the state table. Since each element is swapped at least once (when
it is indexed by “counter”), it is necessary to take into account the likely effect
of this swap. Swapping is a nasty non-linear process which is hard to analyze.
However, when dealing with the first few elements of the state table, there is
a high probability that the byte with which the element is swapped has not
itself been involved in any previous exchanges, and therefore retains its initial
value {0,1,2,. . . ,255}. Similarly, when dealing with the first few elements of the
state table, there is also a significant probability that none of the state elements
added to index2 in line 6 of the algorithm has been swapped either.
This means that the most likely value of an element in the state table can

be estimated by assuming that state[x] == x in the algorithm above. In this
case, the algorithm becomes:

1 index1 = 0;

2 index2 = 0;

3

4 for(counter = 0; counter < 256; counter++)

5 {

6 index2 = (key_data_ptr[index1] + counter + index2) % 256;

7 state[counter] = index2;

8 index1 = (index1 + 1) % key_data_len;

9 }

Which can be reduced to:

B. The most likely value for element E of the state table is:

S[E] = X(E) + E(E + 1)/2
where X(E) is the sum of bytes 0 . . . E (inclusive) of the key.

2



(when calculating the sum of key elements, the key is considered to “wrap
around” on itself).
Given this analysis, we can calculate the probability for each element of the

state table that it’s value is the “most likely value” of B above. The easiest way
to do this is to evaluate the state tables produced from a number of pseudo-
randomly generated RC4 keys. The following table shows the results for the
first 47 elements from a trial of 100 000 eighty-bit RC4 keys:

Probability (%)
0–7 37.0 36.8 36.2 35.8 34.9 34.0 33.0 32.2
8–15 30.9 29.8 28.5 27.5 26.0 24.5 22.9 21.6
16–23 20.3 18.9 17.3 16.1 14.7 13.5 12.4 11.2
24–31 10.1 9.0 8.2 7.4 6.4 5.7 5.1 4.4
32–39 3.9 3.5 3.0 2.6 2.3 2.0 1.7 1.4
40–47 1.3 1.2 1.0 0.9 0.8 0.7 0.6 0.6

The table confirms that there is a significant correlation between the first
few values in the state table and the “likely value” predicted by B.

3 Weak Keys

The RC4 state table is used to generate a pseudo-random stream which is
XORed with the plaintext to give the ciphertext. The algorithm used to gener-
ate the stream is as follows:

x and y are initialized to 0.

To generate each byte:

1 x = (x + 1) % 256;

2 y = (state[x] + y) % 256;

3 swap_byte(&state[x], &state[y]);

4 xorIndex = (state[x] + state[y]) % 256;

5 GeneratedByte = state[xorIndex];

One way to exploit our analysis of the state table is to find circumstances
under which one or more generated bytes are strongly correlated with a small
subset of the key bytes.
Consider what happens when generating the first byte if state[1] == 1.

1 x = (0 + 1) % 256; /* x == 1 */

2 y = (state[1] + 0) % 256; /* y == 1 */

3 swap_byte(&state[1], &state[1]); /* no effect */

4 xorIndex = (state[1] + state[1]); /* xorIndex = 2 */

5 GeneratedByte = state[2]

And we know that state[2] is has a high probability of being

S[2] = K[0] +K[1] +K[2] + 2(2 + 1)/2

Similarly,

3



S[1] = K[0] +K[1] + 1(1 + 1)/2

So to make it probable that S[1] == 1, we have:

K[0] +K[1] == 0 (mod 256)

In which case the most likely value for S[2] is:

S[2] = K[2] + 3

This allows us to identify a class of weak keys:

C. Given an RC4 keyK[0]..K[N ] withK[0]+K[1] == 0 (mod 256), there
is a significant probability that the first byte generated by RC4 will be
K[2] + 3 (mod 256).

Note that there are two special cases, caused by “unexpected” swapping
during key generation. WhenK[0] == 1, the “expected” output byte isK[2]+2,
and when K[0] == 2, the expected value is K[2] + 1.
There are a number of similar classes of “weak keys” which only affect a few

keys out of every 65536. However the particular symmetry in this class means
that it affects one key in 256, making it the most interesting instance.
Once again I took the easy way out and used simulation to determine the

approximate probability that result C holds for any given key. Probabilities
ranged between 12% and 16% depending on the values of K[0] and K[1], with
a mean of about 13.8%. All these figures are significantly greater than the
0.39used was again 80 bits. This works the other way around as well: given the
first byte B[0] generated by a weak key, the probability that K[2] == B[0]− 3
(mod 256) is 13.8%.

4 Exploiting Weak Keys in RC4

Having found a class of weak keys, we need a practical way to attack RC4 based
cryptosystems using them. The most obvious way would be to search potential
weak keys first during an exhaustive attack. However since only one in every
256 keys is weak, the effective reduction in search space is not particularly
significant.
The usefulness of weak keys does increase if the opponent is satisfied with

recovering only a percentage of the keys subjected to analysis. Given a known
generator output which includes the first generated byte, one could assume that
the key was weak and search only the weak keys which would generate the
known initial byte. Since 1 in 256 keys is weak, and there is a 13.8% chance
that the assumed value of K[2] will be correct, there is only a 0.054% chance
of finding the key this way. However, you have reduced the search space by 16
bits due to the assumed relationship between K[0] and K[1] and the assumed
value of K[2], so the work factor per key recovered is reduced by a factor of 35,
which is equivalent reducing the effective key length by 5.1 bits.
However in particular circumstances, the known relationships between weak

keys may provide a much more significant reduction in workload. The remain-
der of this section describes an attack which, although requiring very specific
conditions, illustrates the potential threat.

4



As a stream cipher, a particular RC4 key can only be used once. When mul-
tiple communications sessions are required, some mechanism must be provided
for generating a new session key each time. Let us suppose that an implemen-
tation chose the simple method of incrementing the previous session key to get
the new session key, and that the session key was treated as a “little endian”
(least significant byte first) integer for this purpose.
We now have the interesting situation that the session keys will “cycle

through” weak keys in a pattern which repeats every 216 keys:

00 00 00 . . . Weak
(510 non-weak keys)
FF 01 00 . . . Weak
(254 non-weak keys)
FE 02 00 . . . Weak
(254 non-weak keys)
FD 03 00 . . . Weak
. . .
01 FF 00 . . . Weak
(254 non-weak keys)
00 00 01 . . . Weak
(510 non-weak keys)
FF 01 01 . . . Weak

(Least significant byte on the left)
Now while an isolated weak key cannot be identified simply from a known

generator output, this cycle of weak keys at known intervals can be identified us-
ing statistical techniques since each of the weak keys has a higher than expected
probability of generating the same initial byte. This means that an opponent
who knew the initial generated bytes of about 216 session keys could identify
the weak keys, and would also be able to locate the 510-key gap between succes-
sive cycles of weak keys (although not precisely). Since the 510-key gap occurs
immediately following a key which begins with 00 00, the opponent not only
knows that the keys are weak, but also knows the first two bytes of each key.
The third byte of each key can be guessed from the first output byte generated
by the key, with a 13.8% chance of a correct guess. Assuming that the “510-key
gap” is narrowed down to 1 of 8 weak keys, the attacker can search a key space
which is 24 bits less than the size of the session keys, with a 13.8%/8 chance of
success, effectively reducing the key space by approximately 18 bits.
Although this particular attack depends on a very specific set of circum-

stances, it is likely that other RC4 based cryptosystems in which there are lin-
ear relationships between successive session keys could be vulnerable to similar
attacks.

5 Recommendations

The attacks described in this algorithm result from inadequate “mixing” of key
bytes during the generation of the RC4 state table. The following measures
could be taken to strengthen cryptosystems based on the RC4 algorithm:

5



(a) After initializing the algorithm, generate and discard a number of bytes.
Since the algorithm used to generate bytes also introduces additional non-
linear dependencies into the state table, this would make analysis more
difficult.

(b) In systems which require multiple session keys, ensure that session keys
are not linearly related to each other.

(c) Avoid using the weak keys described.

6 Conclusion

This preliminary analysis of RC4 shows that the algorithm is vulnerable to
analytic attacks based on statistical analysis of its state table. It is likely that a
more detailed analysis of the algorithm will reveal more effective ways to exploit
the weaknesses described.

A One Week Later. . .

Hi c’punks & sci.cryptites
About a week ago I posted a message about weak keys in RC4. This is

an update on the results of my continued 4am sessions with RC4 and shows
that certain weak keys lead to an almost-feasible known plaintext attack on the
cipher (well, about as feasible as the differential attack on DES, shall we say).
The attack is based on two particularly interesting three-byte key prefixes

which have a high probability of producing PRNG sequences which start with
a known two-byte sequence. The prefixes are:

1. Keys starting with “00 00 FD” which have a 14% probability of generating
sequences which start “00 00”.

2. Keys starting with “03 FD FC” which have a 5% probability of generating
sequences which start “FF 03”.

Note that the expected frequency of any two-byte output sequence is 1 in
65536 or about 0.0015%, so these key prefixes are highly unusual. I won’t go
into the reasons why in this post, since it follows the same reasoning as my
last post, but these prefixes are special in that they have a high probability of
initializing the RC4 state table in such a way that the first two generated bytes
depend only on the first three entries in the state table.
This observation is the basis for a simple known-plaintext attack which re-

duces the effective key space which you need to search to have a 50% probability
of discovering a key by about 11.2 bits. The down side is that you need “quite
a few” known plaintexts to make the attack feasible.
It works as follows:

1. Collect a large number of known plaintexts (and hence known generator
sequences).

2. Discard generator sequences which do not start with “00 00” or “FF 03”.

6



3. For generator streams starting “00 00”, search all keys which begin with
“00 00 FD”.

4. For generator streams staring “FF 03”, search all keys which begin with
“03 FD FC”.

5. Keep going until you find a key :-)

Clearly this attack will only discover a small fraction of the keys. However
since most generator sequences are discarded without being searched, and for
those which are searched the search is 224 smaller than would be required to
search the entire keyspace, the number of trials required to determine a key is
significantly lower than for brute force alone.
Enough of an intro, here are the relevant results. Forgive my simplistic ap-

proach to maths, I’m a philosopher-come-software developer, not a mathemati-
cian. I’ve run the relevant simulations with 40-bit, 64-bit, 80-bit and 128-bit
key lengths, and with two different PRNGs. For the sake of consistency with my
earlier paper I’ll use the figures gathered for 80-bit keys (this seems to be RSA’s
preferred key length for RC4), but there are no significant differences for other
key lengths. The PRNG used for these tests was L’Ecuyer’s 32-bit combined
linear congruential generator as described in “Applied Cryptography” p. 349.

(a) Out of one million trials, keys starting with “00 00 FD” generated se-
quences starting “00 00” 138217 times, and keys starting with “03 FD
FC” generated output sequences starting “FF 03” 50490 times.

(b) Out of ten million trials, arbitrary pseudo-random keys generated se-
quences starting with “00 00” 446 times, and sequences starting with
“FF 03” 146 times. (Note the abnormally high incidence of “00 00”; the
expected mean is 152.8).

Suppose we have the output stream generated by a randomly chosen key.
The chance that it will start with either “00 00” or “FF 03”, and that we will
therefore search it, is:

(446 + 146)/1e7 = 5.92e-5

The chance that it starts with “00 00” and was generated by a key starting
with “00 00 FD”, or that it starts with “FF 03” and was generated by a key
starting “03 FD FC” - i.e. the chance that we will search it and be rewarded
for our efforts - is:

(138217 + 50490)/(1e6 ∗ 224) = 1.12e-8

The total number of plaintexts required for a 50discover one of the keys is:

log(0.5)/ log(1− 1.12e-8) = 61900000

Well I did say “quite a few” plaintexts would be necessary :-)
And the number of plaintexts which you expect to search in order to find

the “right” one is:

61900000 ∗ 5.92e-5 = 3665

7



Since the total key length is 80 bits, and we are “guessing” 24 of these, each
search requires 256 trials. Hence the total number of trials for a 50% chance of
discovering a key is:

3665 ∗ 256 = 2.64e20 = 267.8

Since brute search alone would require 279 trials for a 50% chance of deter-
mining the key, this reduces the number of trials by 211.2.
The results are essentially identical for all the key lengths I have tried, and

in each case reduce effective key length by about 11.2 bits. So, for example,
a 64-bit key would normally require 263 trials for 50% chance of solution; this
attack reduces the number of trials to 251.8 at the cost of requiring 62 million
known plaintexts.
I’m still running simulations to check my maths, and although initial results

are encouraging, I don’t have enough data for it to be statistically relevant yet
(generating all these sets of 62 million known streams takes time...) So consider
this preliminary (again), and I’ll post the results of my simulations when I have
enough data.

8


